Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Clin Microbiol Infect ; 2022 Oct 14.
Article in English | MEDLINE | ID: covidwho-2269725

ABSTRACT

OBJECTIVES: We aimed to investigate the 1-month humoral response to two or three doses of a messenger RNA coronavirus disease 2019 (COVID-19) vaccine as a primary vaccination regimen in specific populations compared with that in healthy adults. METHODS: Agence Nationale Recherche contre le Sida (ANRS)0001S-COV-POPART (NCT04824651) is a French nation-wide, multi-centre, prospective, observational cohort study assessing the immune response to COVID-19 vaccines routinely administered to 11 sub-groups of patients with chronic conditions and two control groups. Patients and controls who received at least two vaccine doses and whose results 1 month after the second dose were available were included. The humoral response was assessed 1 month after the first, second and third doses (if applicable) based on the percentage of responders (positive for anti-Spike severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2] IgG antibodies), geometric means of anti-Spike SARS-CoV-2 IgG antibodies (enzyme-linked immunosorbent assay) and proportion of participants with anti-SARS-CoV-2-specific neutralizing antibodies (in vitro neutralization assay for the original SARS-CoV-2 strain). All analyses were centralized. RESULTS: We included 4091 participants in this analysis: 2979 participants from specific sub-populations and 1112 controls. Only 522 (17.5%) participants from the specific populations received three doses as a primary vaccination regimen. Patients living with human immunodeficiency virus, cancer and diabetes had high percentages of responders after two doses, whereas patients with solid organ transplants, allogeneic hematopoietic stem cell transplants and hypogammaglobulinaemia had the lowest percentage of responders (35.9% [95% CI, 29.2-43.0], 57.4% [95% CI, 48.1-66.3] and 77.1% [95% CI, 65.6-86.3], respectively). In those who received the third dose, the percentage of responders reached 54.2% (95% CI, 42.9-65.2) (vs. 32.3% [95% CI, 16.7-51.4] after 2 doses) among those with solid organ transplants and 73.9% (95% CI, 58.9-85.7) (vs. 56.1% [95% CI, 46.2-65.7] after 2 doses) among those with hematopoietic stem cell transplants. Similar results were found with anti-SARS-CoV-2-specific neutralizing antibodies. CONCLUSIONS: A lower humoral response to COVID-19 vaccines was observed in the specific populations compared with that in the controls. The third dose of this vaccine in the primary regimen had a positive effect on the percentages of patients who developed anti-Spike IgG antibodies and specific neutralizing antibodies.

2.
Cochrane Database Syst Rev ; 12: CD015477, 2022 Dec 07.
Article in English | MEDLINE | ID: covidwho-2261173

ABSTRACT

BACKGROUND: Different forms of vaccines have been developed to prevent the SARS-CoV-2 virus and subsequent COVID-19 disease. Several are in widespread use globally.  OBJECTIVES: To assess the efficacy and safety of COVID-19 vaccines (as a full primary vaccination series or a booster dose) against SARS-CoV-2. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register and the COVID-19 L·OVE platform (last search date 5 November 2021). We also searched the WHO International Clinical Trials Registry Platform, regulatory agency websites, and Retraction Watch. SELECTION CRITERIA: We included randomized controlled trials (RCTs) comparing COVID-19 vaccines to placebo, no vaccine, other active vaccines, or other vaccine schedules. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. We used GRADE to assess the certainty of evidence for all except immunogenicity outcomes.  We synthesized data for each vaccine separately and presented summary effect estimates with 95% confidence intervals (CIs).  MAIN RESULTS: We included and analyzed 41 RCTs assessing 12 different vaccines, including homologous and heterologous vaccine schedules and the effect of booster doses. Thirty-two RCTs were multicentre and five were multinational. The sample sizes of RCTs were 60 to 44,325 participants. Participants were aged: 18 years or older in 36 RCTs; 12 years or older in one RCT; 12 to 17 years in two RCTs; and three to 17 years in two RCTs. Twenty-nine RCTs provided results for individuals aged over 60 years, and three RCTs included immunocompromized patients. No trials included pregnant women. Sixteen RCTs had two-month follow-up or less, 20 RCTs had two to six months, and five RCTs had greater than six to 12 months or less. Eighteen reports were based on preplanned interim analyses. Overall risk of bias was low for all outcomes in eight RCTs, while 33 had concerns for at least one outcome. We identified 343 registered RCTs with results not yet available.  This abstract reports results for the critical outcomes of confirmed symptomatic COVID-19, severe and critical COVID-19, and serious adverse events only for the 10 WHO-approved vaccines. For remaining outcomes and vaccines, see main text. The evidence for mortality was generally sparse and of low or very low certainty for all WHO-approved vaccines, except AD26.COV2.S (Janssen), which probably reduces the risk of all-cause mortality (risk ratio (RR) 0.25, 95% CI 0.09 to 0.67; 1 RCT, 43,783 participants; high-certainty evidence). Confirmed symptomatic COVID-19 High-certainty evidence found that BNT162b2 (BioNtech/Fosun Pharma/Pfizer), mRNA-1273 (ModernaTx), ChAdOx1 (Oxford/AstraZeneca), Ad26.COV2.S, BBIBP-CorV (Sinopharm-Beijing), and BBV152 (Bharat Biotect) reduce the incidence of symptomatic COVID-19 compared to placebo (vaccine efficacy (VE): BNT162b2: 97.84%, 95% CI 44.25% to 99.92%; 2 RCTs, 44,077 participants; mRNA-1273: 93.20%, 95% CI 91.06% to 94.83%; 2 RCTs, 31,632 participants; ChAdOx1: 70.23%, 95% CI 62.10% to 76.62%; 2 RCTs, 43,390 participants; Ad26.COV2.S: 66.90%, 95% CI 59.10% to 73.40%; 1 RCT, 39,058 participants; BBIBP-CorV: 78.10%, 95% CI 64.80% to 86.30%; 1 RCT, 25,463 participants; BBV152: 77.80%, 95% CI 65.20% to 86.40%; 1 RCT, 16,973 participants). Moderate-certainty evidence found that NVX-CoV2373 (Novavax) probably reduces the incidence of symptomatic COVID-19 compared to placebo (VE 82.91%, 95% CI 50.49% to 94.10%; 3 RCTs, 42,175 participants). There is low-certainty evidence for CoronaVac (Sinovac) for this outcome (VE 69.81%, 95% CI 12.27% to 89.61%; 2 RCTs, 19,852 participants). Severe or critical COVID-19 High-certainty evidence found that BNT162b2, mRNA-1273, Ad26.COV2.S, and BBV152 result in a large reduction in incidence of severe or critical disease due to COVID-19 compared to placebo (VE: BNT162b2: 95.70%, 95% CI 73.90% to 99.90%; 1 RCT, 46,077 participants; mRNA-1273: 98.20%, 95% CI 92.80% to 99.60%; 1 RCT, 28,451 participants; AD26.COV2.S: 76.30%, 95% CI 57.90% to 87.50%; 1 RCT, 39,058 participants; BBV152: 93.40%, 95% CI 57.10% to 99.80%; 1 RCT, 16,976 participants). Moderate-certainty evidence found that NVX-CoV2373 probably reduces the incidence of severe or critical COVID-19 (VE 100.00%, 95% CI 86.99% to 100.00%; 1 RCT, 25,452 participants). Two trials reported high efficacy of CoronaVac for severe or critical disease with wide CIs, but these results could not be pooled. Serious adverse events (SAEs) mRNA-1273, ChAdOx1 (Oxford-AstraZeneca)/SII-ChAdOx1 (Serum Institute of India), Ad26.COV2.S, and BBV152 probably result in little or no difference in SAEs compared to placebo (RR: mRNA-1273: 0.92, 95% CI 0.78 to 1.08; 2 RCTs, 34,072 participants; ChAdOx1/SII-ChAdOx1: 0.88, 95% CI 0.72 to 1.07; 7 RCTs, 58,182 participants; Ad26.COV2.S: 0.92, 95% CI 0.69 to 1.22; 1 RCT, 43,783 participants); BBV152: 0.65, 95% CI 0.43 to 0.97; 1 RCT, 25,928 participants). In each of these, the likely absolute difference in effects was fewer than 5/1000 participants. Evidence for SAEs is uncertain for BNT162b2, CoronaVac, BBIBP-CorV, and NVX-CoV2373 compared to placebo (RR: BNT162b2: 1.30, 95% CI 0.55 to 3.07; 2 RCTs, 46,107 participants; CoronaVac: 0.97, 95% CI 0.62 to 1.51; 4 RCTs, 23,139 participants; BBIBP-CorV: 0.76, 95% CI 0.54 to 1.06; 1 RCT, 26,924 participants; NVX-CoV2373: 0.92, 95% CI 0.74 to 1.14; 4 RCTs, 38,802 participants). For the evaluation of heterologous schedules, booster doses, and efficacy against variants of concern, see main text of review. AUTHORS' CONCLUSIONS: Compared to placebo, most vaccines reduce, or likely reduce, the proportion of participants with confirmed symptomatic COVID-19, and for some, there is high-certainty evidence that they reduce severe or critical disease. There is probably little or no difference between most vaccines and placebo for serious adverse events. Over 300 registered RCTs are evaluating the efficacy of COVID-19 vaccines, and this review is updated regularly on the COVID-NMA platform (covid-nma.com). Implications for practice Due to the trial exclusions, these results cannot be generalized to pregnant women, individuals with a history of SARS-CoV-2 infection, or immunocompromized people. Most trials had a short follow-up and were conducted before the emergence of variants of concern. Implications for research Future research should evaluate the long-term effect of vaccines, compare different vaccines and vaccine schedules, assess vaccine efficacy and safety in specific populations, and include outcomes such as preventing long COVID-19. Ongoing evaluation of vaccine efficacy and effectiveness against emerging variants of concern is also vital.

3.
Sci Rep ; 12(1): 20373, 2022 Nov 27.
Article in English | MEDLINE | ID: covidwho-2133622

ABSTRACT

Immune response induced by COVID-19 vaccine booster against delta and omicron variants was assessed in 65 adults (65-84 years old) early aftesr a first booster dose. An increase in SARS-CoV-2 neutralizing antibodies was shown in individuals not previously infected without evidence of an age-related effect, with lower increase in those infected before a single dose of primary vaccination. Of note, humoral response was observed only starting from the 5th day after the boost.


Subject(s)
COVID-19 , Viral Vaccines , Humans , Aged , Aged, 80 and over , Antibodies, Neutralizing , SARS-CoV-2/genetics , Neutralization Tests , Antibodies, Viral , RNA, Messenger , COVID-19/prevention & control , Vaccination
5.
JAMA Oncol ; 8(4): 612-617, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1611176

ABSTRACT

IMPORTANCE: Patients with solid cancer are more susceptible to develop SARS-CoV-2 infection and severe complications; the immunogenicity in patients treated with anticancer agents remains unknown. OBJECTIVE: To assess the immune humoral response to 2 or 3 doses of the BNT162b2 (BioNTech; Pfizer) vaccine in patients treated with anticancer agents. DESIGN, SETTING, AND PARTICIPANTS: A prospective observational cohort study was conducted between February 1 and May 31, 2021. Adults treated with anticancer agents who received 2 or 3 doses of vaccine were included; of these, individuals with a weak humoral response 1 month after the second dose received a third injection. INTERVENTIONS: Quantitative serologic testing of antibodies specific for SARS-CoV-2 was conducted before vaccination and during follow-up. MAIN OUTCOMES AND MEASURES: Humoral response was evaluated with a threshold of anti-SARS-CoV-2 spike protein antibody levels at 1000 arbitrary units (AU)/mL to neutralize less-sensitive COVID-19 variants. RESULTS: Among 163 patients (median [range] age, 66 [27-89] years, 86 men [53%]) with solid tumors who received 2 or 3 doses of vaccine, 122 individuals (75%) were treated with chemotherapy, 15 with immunotherapy (9%), and 26 with targeted therapies (16%). The proportions of patients with an anti-S immunoglobulin G titer greater than 1000 AU/mL were 15% (22 of 145) at the time of the second vaccination and 65% (92 of 142) 28 days after the second vaccination. Humoral response decreased 3 months after the second dose. Treatment type was associated with humoral response; in particular, time between vaccine and chemotherapy did not interfere with the humoral response. Among 36 patients receiving a third dose of vaccine, a serologic response greater than 1000 AU/mL occurred in 27 individuals (75%). CONCLUSIONS AND RELEVANCE: The results of this cohort study appear to support the use of a third vaccine dose among patients with active cancer treatment for solid tumors.


Subject(s)
Antineoplastic Agents , COVID-19 , Neoplasms , Adult , Aged , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Cohort Studies , Female , Humans , Male , Neoplasms/drug therapy , Prospective Studies , SARS-CoV-2
6.
Vaccine ; 39(44): 6539-6544, 2021 10 22.
Article in English | MEDLINE | ID: covidwho-1440394

ABSTRACT

BACKGROUND: Deciding how best to invest in healthcare is never an easy task and prioritization is therefore an area of great interest for policymakers. Too low public vaccine confidence, which results in insufficient vaccine uptake, remains an area of concern for EU policy-makers. Within the European Joint action on vaccination, a work-package dedicated to research aims to define tools and methods for priority-setting in the field of vaccination research. We therefore propose a prioritization framework to identify research priorities towards generating and synthesizing evidence to support policies and strategies aiming at increasing vaccine coverage. MATERIALS/METHODS: We used a multi-criteria decision analysis (MCDA) method inspired by the Child Health and Nutrition Research Initiative developed by Rudan et al. This quantitative methodology follows a series of steps involving different groups of experts and relevant stakeholders. The first step consists in identifying key research questions through a broad consultation. In parallel, a first group of experts is tasked to select criteria for prioritization of research questions, taking into consideration the ultimate goal of the exercise. Another group of experts is then requested to assess a weight to each of the criteria, using pair-wise comparisons. The final step consists in gathering experts who will assess each research question against the weighted criteria. This evaluation leads to assigning a score to each individual research question, which can then be ranked in order of priority. RESULTS: We focused our work on four pre-selected pilot vaccines (pertussis, measles containing combination vaccines, influenza and HPV). The consultation generated 124 questions, which were secondarily sorted and re-worded to obtain 27 questions to be ranked. Criteria for setting priorities were the following: accessibility, answerability, deliverability, disease prevalence/incidence, effectiveness, equity, generalization, and territory. During a final face-to-face meeting international experts ranked the 27 questions and agreed on a consensual list of six top-priorities. CONCLUSIONS: We have developed a transparent, evidence-based rigorous framework to defined key research questions to generate evidence towards the design of policies and strategies to increase vaccine coverage. Results were disseminated broadly and submitted to the EC for potential funding in the context of The Horizon Europe Program. The same process will be conducted in 2021 to identify vaccination research priorities regarding all vaccines used in the EU as well as COVID-19 vaccines.


Subject(s)
Biomedical Research , COVID-19 , Influenza Vaccines , COVID-19 Vaccines , Child , Europe , Health Priorities , Humans , SARS-CoV-2 , Vaccination , Vaccination Coverage
8.
PLoS Pathog ; 17(3): e1009416, 2021 03.
Article in English | MEDLINE | ID: covidwho-1156080

ABSTRACT

COVID-19 is characterized by respiratory symptoms of various severities, ranging from mild upper respiratory signs to acute respiratory failure/acute respiratory distress syndrome associated with a high mortality rate. However, the pathophysiology of the disease is largely unknown. Shotgun metagenomics from nasopharyngeal swabs were used to characterize the genomic, metagenomic and transcriptomic features of patients from the first pandemic wave with various forms of COVID-19, including outpatients, patients hospitalized not requiring intensive care, and patients in the intensive care unit, to identify viral and/or host factors associated with the most severe forms of the disease. Neither the genetic characteristics of SARS-CoV-2, nor the detection of bacteria, viruses, fungi or parasites were associated with the severity of pulmonary disease. Severe pneumonia was associated with overexpression of cytokine transcripts activating the CXCR2 pathway, whereas patients with benign disease presented with a T helper "Th1-Th17" profile. The latter profile was associated with female gender and a lower mortality rate. Our findings indicate that the most severe cases of COVID-19 are characterized by the presence of overactive immune cells resulting in neutrophil pulmonary infiltration which, in turn, could enhance the inflammatory response and prolong tissue damage. These findings make CXCR2 antagonists, in particular IL-8 antagonists, promising candidates for the treatment of patients with severe COVID-19.


Subject(s)
COVID-19 , Genome, Viral , Metagenomics , SARS-CoV-2 , Th1 Cells/immunology , Th17 Cells/immunology , Transcriptome , Adult , Aged , Aged, 80 and over , COVID-19/genetics , COVID-19/immunology , Female , Humans , Male , Middle Aged , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology
SELECTION OF CITATIONS
SEARCH DETAIL